5-12 Solving Equations by Factoring

Objective: To use factoring in solving polynomial equations.

Vocabulary

Zero-product property A product of factors is zero if and only if one or more of the factors is zero.

Polynomial equation An equation whose sides are both polynomials.

Linear equation A polynomial equation whose term of highest degree has degree 1. For example, x - 2 = 0 and 5x - 4 = 6.

Quadratic equation A polynomial equation whose term of highest degree has degree 2. For example, $x^2 - x - 6 = 0$, $x^2 = 9x$, and $10x - 9 = x^2$.

Cubic equation A polynomial equation whose term of highest degree has degree 3. For example, $x^3 - 2x^2 + x - 1 = 0$.

Standard form of a polynomial equation A form of an equation in which one side is a simplified polynomial arranged in order of decreasing degree of the variable and the other side is zero.

Double or multiple root A factor that occurs twice in the factored form of an equation. For example, 5 is a double root of x(x - 5)(x - 5) = 0.

Example 1 Solve
$$(x - 1)(x + 3) = 0$$
.

Since the product of factors is 0, one of the factors on the left side must equal 0. Solution

$$x - 1 = 0$$
 or $x + 3 = 0$
 $x = 1$ $x = -3$

The solution set is $\{1, -3\}$. Just by looking at the original equation, you can see that when x = 1 or x = -3, the product will be 0.

Example 2 Solve
$$3n(n-2)(n-5) = 0$$
.

Solution The solution set is $\{0, 2, 5\}$. n = 0

Never transform an equation by dividing by an expression containing a CAUTION variable. Notice that in Example 2, the solution 0 would have been lost if both sides of the equation had been divided by 3n.

Solve.
$$\{-4, 5\}$$

1. $(y + 4)(y - 5) = 0$

$$\{-1, -8\}$$

2. $0 = (n + 1)(n + 8)$

3.
$$10n(n-2) = 0$$
 {0,

4.
$$2x(x - 10) = 0$$
 {**0, 10**}
7. $x(2x - 1)(2x + 1) = 0$

5.
$$(p-1)(p-7) = 0$$
 {1, 7} 6. $0 = 2n(n-1)(n-3)$

7.
$$x(2x-1)(2x+1) = 0$$
 8. $0 = n(n-6) \{0, 6\}$ 9. $0 = 3x(4x-1)(x-2) \{0, \frac{1}{2}, -\frac{1}{2}\}$

5-12 Solving Equations by Factoring (continued)

Solve the quadratic equation $2x^2 - x = 3$. Example 3

Solution

2. Factor the left side.
$$(2x - 3)(x + 1) = 0$$

3. Set each factor equal to 0 and solve.
$$2x - 3 = 0 \quad \text{or} \quad x + 1 = 0$$

$$2x = 3 \quad \qquad x = -1$$

$$x = \frac{3}{2}$$

4. Check the solutions in the original equation.

$$2\left(\frac{3}{2}\right)^{2} - \left(\frac{3}{2}\right) \stackrel{?}{=} 3$$

$$2\left(\frac{9}{4}\right) - \frac{3}{2} \stackrel{?}{=} 3$$

$$2\left(1\right) + 1 \stackrel{?}{=} 3$$

$$3 = 3 \checkmark$$

$$\frac{9}{2} - \frac{3}{2} \stackrel{?}{=} 3$$

$$\frac{9}{2} - \frac{3}{3} = \frac{6}{2} = 3 \checkmark$$

The solution set is $\left\{-1, \frac{3}{2}\right\}$.

28. $\left\{\frac{1}{3}, 1\right\}$ 30. $\left\{8, -\frac{10}{3}\right\}$ **22.** {-7, -5} Solve. **10.** $x^2 - x - 12 = 0$ {**4, -3**} **11.** $x^2 - 12x + 27 = 0$ {**3, 9**} **12.** $0 = x^2 - 4x - 32$ {**8, -4**}

15. $x^2 - 10x - 24 = 0$ {**12, -2**} **13.** $0 = m^2 + 3m - 54$ {**6, -9**} **14.** $x^2 - 4y + 3 = 0$ {**1, 3**}

17.
$$y^2 = 12y \{0, 12\}$$
 18. $6k^2 = 2k \{0, 12\}$ 18. $6k^2 = 2k \{0, 12\}$ 18. $6k^2 = 2k \{0, 12\}$

13.
$$0 = m^2 + 3m - 54$$
 (6, -9) 14. $x^2 = 4y + 3 = 6$ (1, 6)

16. $0 = n^2 - n$ (0, 1)

17. $y^2 = 12y$ (0, 12)

18. $6k^2 = 2k$ (0, $\frac{1}{3}$)

19. $x^2 + 16 = 8x$ (4)

20. $a^2 = 10 - 3a$ (-5, 2)

21. $3x^2 - x = 2$

22. $4x^2 = 5x + 36$ (-4, 9)

22.
$$0 = x^2 + 12x + 35$$
 23. $y^2 + 5y = 14 \{ -7, 2 \}$ 24. $x^2 = 5x + 36 \{ -4, 9 \}$ 25. $4m^2 - 25 = 0 \{ -\frac{5}{2}, \frac{5}{2} \}$ 26. $r^2 + 8 = 9r \{ 1, 8 \}$ 27. $6n^2 - n = 2 \{ \frac{2}{3}, -\frac{1}{2} \}$

28.
$$3x^2 + 1 = 4x$$

29. $3a^2 = 6a \{ 0, 2 \}$
30. $3p^2 - 14p = 80$
31. $2x^2 = 10 + x \{ -2, \frac{5}{2} \}$
32. $3p^2 + 17p = -10$
33. $3x^2 + 1 = 4x \{ \frac{1}{3}, 1 \}$

Mixed Review Exercises

Evaluate if x = 3 and y = 6.

1.
$$(x - y)^3$$
 -27

4.
$$(4x)^3$$
 1728
7. $3(x + y)^2$ 243

2.
$$x^3 \cdot x^2$$
 243
5. $3x + y^2$ 45

3.
$$4x^3$$
 108

 $2x^2 - x - 3 = 0$

7.
$$3(x)$$

8.
$$(yx)^2$$
 324

6.
$$3x^2 + y$$
 33

7.
$$3(x)$$

3.
$$(yx)^2$$
 324

6.
$$3x^2 + y$$
 33
9. y^2x^2 324

10.
$$(5x^2 - 1)^{-1}$$

96

10.
$$(5x^2y^2)(-3xy^4)$$
 - 15 x^3y^6 11. $(8a)^3$ 512 a^3 12. $-3(x+4)$ - 3 x - 12